Quiz #1

March 19, 2007 Prof. Woo-Young Choi Electronic Circuits II

Problem 1 (4)

Consider the following amplifier circuit having a PMOS transistor with $V_t = -1V$, k'(W/L)=1mA/V² and $\lambda=0$. Assume C is very large so that the capacitor is open for DC signals. $R_{sig}=10k\Omega$.

(a)(2) Determine R_{G1} and R_{G2} so that the PMOS has g_m of 1mA/V. Use R_{G1} and R_{G2} values greater than 1M Ω but less than 5 M Ω . Assume the PMOS transistor is in saturation.

(b)(2) Draw a small signal equivalent circuit for the above amplifier and determine the expression for the small signal voltage gain (v_d/v_{sig}) .

Prob. 2 (6)

Consider a MOSFET amplifier circuit shown below. Assume the transistor has $v_T = 1V$, k' = $100\mu A/V^2$, W/L=10 and r_o = infinite. Ignore the body effect.

(a)(2) Determine V_{GS} so that V_{OUT} (DC output voltage) = 3 V.

(b)(2) Determine the numerical value for the amplifier output resistance.

(c)(2) Determine the exact expression for amplifier voltage gain (v_{out}/v_s) .